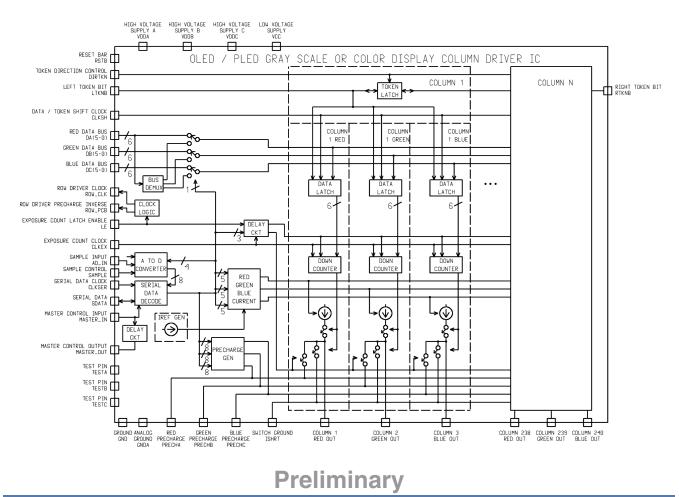


Features


- CMOS High Voltage Process: 9V-30V Display Panel Supply Compatible
- 240 Output Channels, Cascadable
- Token-Based Bidirectional Data Transfer: Direct User Control of Scan Rate
- Current Source Magnitude User Control: 4 µA to 1 mA
- 6-Bit Monochromatic/Color Gray-Scale User Control
- Current matching accuracy: ± 2% ± 1.5 µA intra-die ± 1% inter-die
- Monochromatic/Color Voltage Precharge Options
- Built-In A-to-D Converter Monitoring of Display Panel Characteristics
- 3.3 V to 5 V logic supply
- Up to 35 MHz clock frequency
- Gold-Bumped Die @ 60 micron Output Pitch
- TCP packaging
- Companion to Clare Micronix MXED202
 128-Channel OLED Row Driver

Description

The MXED102 is Clare's second-generation OLED column driver offering, which supports up to 240-monochromatic or 80-color OLED pixels. The MXED102's exceptionally tight current-matching of adjacent and cascaded outputs, precharge options, and OLED monitoring capability, ensures uniform luminance and highquality greyscaling in both monochromatic and RGB mode. This is the first ASSP production driver for OLED module OEM's building a new standard in flat-panel displays.

For All Passive-Matrix Organic-Light-Emitting-Diode Displays

- Monochrome and Color
- Small-Molecule and Polymer
- Current-Sourcing Anode Drivers

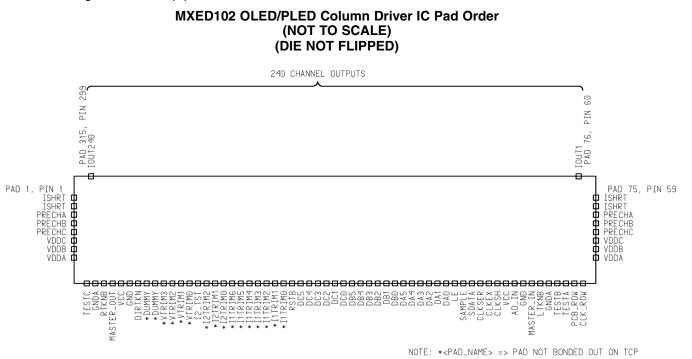
Column Driver Block Diagram

PRELIMINARY ELECTRICAL DATA SHEET

This document is a specification for a digital data driver for Passive Matrix Organic Light Emitting Diode (OLED) and Polymer Light Emitting displays (PLED, PolyLED, LEP, ..., etc) with anodes connected to the columns. The output stage of each channel has a resistive switch to an on chip generated voltage used during precharge and a current source used during data output to minimize non-uniformity caused by spatial and temporal variations of the LED characteristics and by line resistances. The data driver chip is manufactured in a high voltage (30 V) CMOS process and provided in bumped die and TCP (Tape Carrier Package) form.

Description of Operation:

<u>Overview</u>: The MXED102 is configured via a serial port, and pixel data is updated on a per-row basis via a parallel data bus.


Dynamic Pixel Control: Gray-Scale Control data is loaded into the 6-bit Column Exposure Counters each row scan time, while the previously loaded data is being output to the OLED Display Panel. The control data sets the exposure time from 0 to 63 Exposure Clock times. Successive counters are accessed upon coincidence with the token bit, which is shifted the length of the MXED102 by the Token Shift Clock. In 6-bit Data Mode, Databus C {DC(5-0)} is used to enter per-pixel data, and the Token traverses length of the Chip in 240 Token Shift Clocks. In 18-bit Data Mode, Databusses A, B, and C are used to load three successive pixels in parallel, and the Token traverses length of the Chip in 80 Token Shift Clocks.

<u>Chip Configuration</u>: A display controller may use the serial bus to set the characteristics of all column driver ICs by writing to all column driver ICs in parallel. During write, the controller writes the entire data packet. The controller can also interrogate a single column driver IC, whose MASTER pin is pulled high. Only one column driver IC on a given bus can be designated as master. During read, the controller writes the preamble, start of frame delimiter, register address, and turn around bits. It then tri-states for the bus tri-state and data bits and reads the data.

<u>Color/Monochrome</u>: The MXED102 supports three-each interleaved column Current Magnitude settings and three Precharge Voltages, A,B and C, which may be mapped to R,G,B. Monochrome mode is selected by setting the Color control bit to zero, in which case the Current Magnitude and Precharge Voltage is common.

Package and Pin Out

Below is a diagram of the chip pinout:

Pin List

Name	I/O/A	Description
VDDA,		High voltage supply A/B/C:
VDDB,	-	
VDDC		
VCC	-	Logic supply:
GND	-	Ground:
GNDA	-	Analog ground:
ISHRT	-	Ground used to short output channels: There can be high currents on this line. It should be separated from the circuit ground pads (GND) to prevent ground bounce.
PRECHA,	O/A	Precharge A/B/C: Column precharge voltage outputs. PRECHA/B/C should be tied
PRECHB, PRECHC		to PRECHA/B/C of all other column drivers to ensure a uniform display precharge and should be bypassed to ground with a capacitor at least 50 times the display capacitance.
MASTER_IN		Master In: High input implies chip is master. This input is pulled low internally.
MASTER_OUT	0	Master Out: MASTER_IN delayed by 1 LE clock cycle, sampled on rising edge of LE.
RSTB	I	Reset Bar: Input signal used to reset digital logic for test purposes. This input is pulled high internally.
CLKSH	I	Token Shift Clock: Input signal used to shift tokens down the length of the driver IC and latch data into the corresponding columns. The direction of token shift is deter mined by DIRTKN pin.
LTKNB	I/O	Left Token Bit: Input for shift right, output for shift left. Signal is used to pass the tokens into and out of the driver IC. High state represents the presence of token.
RTKNB	I/O	Right Token Bit: Input for shift left, output for shift right. Signal is used to pass the tokens into and out of the driver IC. High state represents the presence of token.
DIRTKN	I	Token Direction Input: Input signal which, when high, causes the token to shift left to right in the driver IC. A low signal causes the token to shift right to left. In the paral lel data mode the token passes through the chip in 80 CLKSH clocks, in the serial data mode the token passes through the chip in 240 CLKSH clocks. This input is pulled high internally.
LE	I	Latch Enable: Input signal used to begin data output. When data output begins, new data input for the following row can begin.
DA(5-0),	I	Data A/B/C: Signal buses used to input the exposure data.
DB(5-0),		
DC(5-0)		
CLKEX	I	Exposure Clock: Input signal used to clock the driver IC's exposure counter from 0 to 63 for a row exposure. The signal must be cycled at least 64 times between LE pulses to completely cycle the counter. Cycles of CLKEX beyond 64 will have no effect.
CLKSER	Ι	Serial Clock: Clock to write serial data into all column drivers or read serial data from the master column driver.
SDATA	I/O	Serial Data: Serial data written to all column drivers or read from the master column driver.
SAMPLE	I	Initiate A/D sample. This input is pulled low internally.

Pin List (continued)

AD_IN	A	A to D Input: The part can do an A to D conversion on the voltage on this input.
TESTA, TESTB, TESTC	A	Test Outputs: The A, B, and C driver bank outputs are muxed to the TESTA, TESTB, and TESTC pads respectively when these pads are pulled low. During normal operation they are left open or tied to VDD.
I1TRIM (6:0)	A	Current Source 1 Trim: These pins must be left open.
I2TRIM (3:0)	А	Current Source 2 Trim: These pins must be left open.
VTRIM (3:0)	А	Voltage Source Trim: These pins must be left open.
I2_TST	А	Current Source 2 Monitor: This pin must be left open.
IOUT(240-1)	А	Channel Outputs: The outputs of the driver IC that directly drives the display panel
CLK_ROW	0	Row Clock: Signal intended to drive the row driver IC shift data clock
PCB_ROW	0	Row Precharge: Signal intended to drive the row driver IC precharge input
Noto: A -> ana		ligital input 0 -> digital output

Note: A => analog, I => digital input, O => digital output

ELECTRICAL SPECIFICATIONS

Positive currents flow into the part, negative currents flow out of the part, largest currents are currents with the greatest absolute magnitude.

Absolute Maximum Ratings:

Parameter	Operating Condition	Min	Тур	Max	Units
Ambient temp	-	-65	-	155	۵°C
Low voltage supply	-	-0.3	-	7.0	V
High voltage supply	-	-0.3	-	35.0	V

Operating Conditions:

Unless otherwise stated, all parameters are specified for the following operating conditions.

Parameter	Sym	Operating Condition	Min	Тур	Max	Units
Ambient temp	TA	-	0	-	70	°C
Low voltage supply	VCC	-	3.0	-	5.5	V
High voltage supplies	VDDA, VDDB, VDDC	-	9.0	-	30	V

Supply Currents:

4

Parameter	Sym	Operating Condition	Min	Тур	Max	Units
High voltage supply current during standby	IDD (stby)	-	-	-	TBD	uA
Internal high voltage supply current during operation	IDD (int)	Current from VDD not flowing out outputs or into precharge circuit lout = per channel	-	-	14 mA+ 12xlout	mA
Low voltage supply current during standby	ICC (stby)	-	-	-	TBD	uA
Low voltage supply current during operation	ICC	-	-	-	10	mA

Digital Inputs:

Parameter	Sym	Operating Condition	Min	Тур	Max	Units
Input low voltage	VIL	-	-	-	0.5	V
Input high voltage	VIH	-	VCC-0.5	-	-	V
Input current	П	-	-10	-	10	uA

Digital Outputs:

Parameter	Sym	Operating Condition	Min	Тур	Max	Units
Output low voltage	VOL	lout = 100 uA	-	-	0.4	V
Output high voltage	VOH	lout = -100 uA	VCC-0.4	-	-	V
Output rise/fall time	TRF	10 to 90 %, Cload=5 pF	-	-	2.0	nS

Serial Configuration Bus:

Bus Operation:

The controller uses the serial bus to set the characteristics of all column driver ICs by writing to all column driver ICs in parallel. During write, the controller writes the entire data packet. The controller can also inter rogate a single column driver IC, who's MASTER pin is pulled high. Only 1 column driver IC on a given bus can be designated as master. During read, the controller writes the preamble, start of frame delimiter, reg ister address, and turn around bits. It then tri-states for the bus tri-state and data bits and reads the data.

Data Packet:

The data packet consists of:

- 14 bit preamble of all 1's
- 2 bit start of frame delimiter (SFD)
- 6 bit register address MSB first
- 1 turn around bit (TA)
- 1 bus tristate (BT)
- 8 bit data packet MSB first

Write => write data to all column driver ICs

Read => read data from master column driver IC

Data order => Preamble first, data last; MSB first, LSB last

R/W	Preamble	SFD	Reg Address	TA	BT	Data
write	1111 1111 1111 11	00	ΑΑΑΑ ΑΑ	0	0	DDDD DDDD
read	1111 1111 1111 11	01	ΑΑΑΑ ΑΑ	0	Z	DDDD DDDD

Input Registers

Register Address 0 - Test Register

Eight bits of data can be written to and read from this register in order to test the serial port. This register has no effect on the column driver.

Register Address 1 - Control Register 1

Bit(s)	Name	Description	Default
7	Freeze Master	Modes: 1 => MASTER_OUT pin is not changed 0 => Normal, MASTER_OUT is updated to MASTER_IN on rising edge of LE	0
6	Disable Precharge Driver	Modes: 1 => Precharge circuit is disabled 0 => Normal	0
5	Standby	Modes: 1 => Part is operating normally 0 => Part is in low power standby mode	0
4	Short Channels	Modes: 1 => Channels are all shorted to ground after the CLKEX count reaches 64 0 => Each channel is individually shorted to ground after its current source is tristated	0
3	Color Mode	Modes: 0 => Monochrome mode 1 => Color mode	0
2	Data Mux	Modes: 0 => DA(5-0), DB(5-0), DC(5-0) data words are read serially from the DC(5-0) pins. The DA(5-0) and DB(5-0) pins are unused. 1 => DA(5-0), DB(5-0), DC(5-0) pins used to read their respective data words.	0
1-0	Test Mode(1:0)	Modes: 00 => Normal operation 01 => Test mode 1 10 => Test mode 2 11 => Test mode 3	00

Register Address 2 - Control Register 2

Bit(s)	Name	Description	Default
7-2	Undefined	-	-
1	Fast Conversion	Modes:	-
-	-	0 => Normal operation	0
-	-	1 =>	-
0	High A/D Gain	Modes:	-
-	-	0 => Normal operation	0

Register Address 3 - A Output Group Data Current Magnitude Register
The 5 LSB bits determine the magnitude of A output group current during data output.
Register Address 4 - B Output Group Data Current Magnitude Register
The 5 LSB bits determine the magnitude of B output group current during data output.
Register Address 5 - C Output Group Data Current Magnitude Register
The 5 LSB bits determine the magnitude of C output group current during data output.
Register Address 6 - A Output Group Precharge Voltage Magnitude Register
The 8 bits determine the magnitude of A output group voltage during precharge.
Register Address 7 - B Output Group Precharge Voltage Magnitude Register
The 8 bits determine the magnitude of B output group voltage during precharge.
Register Address 8 - C Output Group Precharge Voltage Magnitude Register
The 8 bits determine the magnitude of C output group voltage during precharge.
Register Address 8 - C Output Group Precharge Voltage Magnitude Register
The 8 bits determine the magnitude of C output group voltage during precharge.
Register Address 9 - Precharge Count Register
The 3 LSB bits set the precharge time to 0 to 7 CLKEX clock counts.
Register Address 10- A/D Converter Control Register

This register determines which signal is monitored by the A/D converter.

Bit(s)	Name	Description	Default
7-4	UNDEFINED	-	-
3-0	ad_sel(3:0)	0xF => Measure VDDA (Low Gain)	0000
		0xE => Measure TESTA (Low Gain)	
		0xD => Measure IOUT231 (Low Gain)	
		0xC => Measure IOUT6 (Low Gain)	
		0xB=> Measure VDDB (Low Gain)	
		0xA => Measure TESTB (Low Gain)	
		0x9 => Measure IOUT232 (Low Gain)	
		0x8 => Measure IOUT7 (Low Gain)	
		0x7 => Measure VDDC (Low Gain)	
		0x6 => Measure TESTC (Low Gain)	
		0x5 => Measure IOUT233 (Low Gain)	
		0x4 => Measure IOUT8 (Low Gain)	
		0x3 - 0x2 => Undefined	
		0x1 => Measure AD_IN input (High Gain)	
		0x0 => Input grounded	

Registers 11 thru 63 - Undefined

Output Registers

Register Address 0 - Test Register

Register Address 1 - Status Register 0

Bit(s)	Name	Description	Default
7-0	Undefined	-	-

Register Address 2 - A/D Converter Output Register

Registers 3 thru 63 - Undefined

Power on Reset:

The part contains a power on reset circuit that ensures that the serial bus data registers come up in their default value when VCC is cycled on. This brings up the part in its standby mode.

Digital Timing:

Parameter	Sym	Operating Conditions	Min	Тур	Max	Unit
Shift clock frequency	-	-	-	-	25	MHz
Shift clock minimum high or low pulse width	-	-	16	-	-	nS
Exposure clock frequency	-	Control reg 2, bit $1 = 0$	1.0	-	10	MHz
		Control reg 2, bit 1 = 1	-	-	1.0	MHz
Exposure clock minimum high or low pulse width	-	-	80	-	-	nS
Data and token setup/hold time	t _{DSU} , t _{TSU} , t _{DHD} , t _{THD}	-	10	-	-	nS
Latch enable setup/hold time	t _{LSU} , t _{LHD}	-	40	-	-	nS
Token bit output delay	t _{TD}	-	-	-	15	nS
Last data to latch enable time	t _{DLD}	-	200	-	-	nS
Latch disable to new data time	t _{LDD}	-	10	-	-	nS

Precharge Voltage Generator:

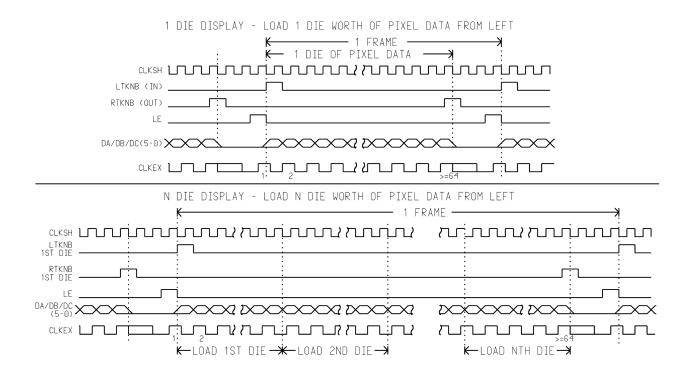
Parameter	Sym	Operating Condition	Min	Тур	Max	Unit
Precharge voltage generator	V _{PRE}	V _{PBF} = 30 * N / 256				
voltage and voltage error		for N = reg value,				
		0 < N < 256	- 2	0	+ 2	%
		4 < V _{PRE} < VDD-4				
		-30 mA < I _{PRE} < -50 mA				
		4 < V _{PRE} < VDD-3				
		-5 mA < I _{PRE} < -30 mA				
Precharge voltage generator	-	5 < V _{PBF} < VDD-4,	-	-	TBD	ohms
output impedance		I = -15 mA				
Load capacitance	-	-	-	-	5	uF

Output Current Channels:

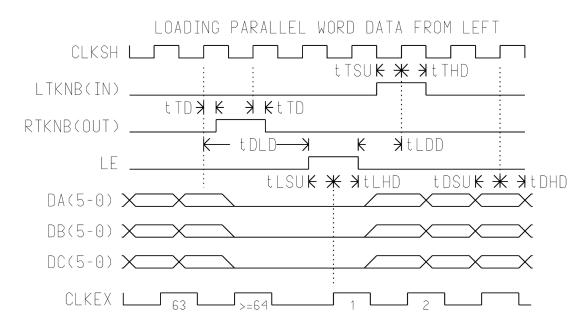
Parameter	Sym	Operating Condition	Min	Тур	Max	Unit
Channel output impedance	-	5 < V _{PRE} < VDD-4,	-	-	2000	ohms
during precharge		$V_{PRE} - V_{IOUT} < 4 V$				
Channel output charging	-	5 < V _{PBE} < VDD-4,	-2.3	-	-	mA
current during precharge		$V_{PRE} - V_{IOUT} > 4 V$				
Driver output current source	I _{OUT}	I _{OUT} = -4 uA x 1.2 ** N				
current and current error		for $N = reg$ value,	-	-	-	-
		0 <u>≤</u> N < 32,				
		0 < V _{IOUT} < VDD-3				
		-20 uA < I _{IOUT} < -75 uA	-3	-	+3	uA
		-75 uA < I _{IOUT} < -1 mA	-4	-	+4	%
Single die, per bank driver		0 < V _{IOUT} < VDD-3,	-	-	-	-
output current source matching	-	V _{IOUT} mismatch < 2 V				
		-20 uA < I _{IOUT} < -75 uA	-1.5	-	+1.5	uA
		-75 uA < I _{IOUT} < -1 mA	-2	-	+2	%
Die to die, per bank average		0 < V _{IOUT} < VDD-3,	-	-	-	-
driver output current source	-	V _{OUT} mismatch < 2 V				
matching		20 uA < I _{IOUT} < 150 uA	-1.5	-	1.5	uA
		-150 uA < I _{IOUT} < -1 mA	-1	-	1	%
Exposure clock rising edge to output going high/low	-	Delay to 50% point	-	-	220	nS
Channel output current rise/fall time	-	10% to 90%	-	-	250	nS
Shorting switch on resistance to ISHRT pin	-	V _{IOUT} < 8 V	-	-	400	ohms
Shorting switch discharge current to ISHRT pin	-	V _{IOUT} > 8 V	25	-	-	mA

Chip Monitor Analog to Digital Converter:

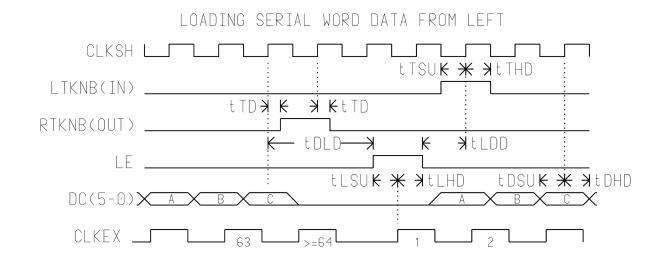
The ADC is intended to be used to calibrate the precharge circuit. The ADC on the column driver chip designated as the master can be monitored by the controller. Which parameter the ADC is monitoring is determined by the A/D Converter Control Register. Results can be monitored on the A/D Converter Output Register.


Parameter	Sym	Operating Condition	Min	Тур	Max	Unit
Bits	-	-	-	8	-	-
Linearity	-	-	5 LSB	-	.5 LSB	-
Accuracy	-	-	- 1 LSB	-	1 LSB	-
Output for low voltage input	-	Vout(8 bit word) =	-	-	-	-
		255 * Vin / 5.0				
Output for high voltage input	-	Vout(8 bit word) =	-	-	-	-
		255 * Vin / 30.0				
Conversion time in CLKEX counts	-	Control reg 2, bit $1 = 0$	896	-	-	CLKEX
		Control reg 2, bit 1 = 1	112	-	-	counts

Preliminary

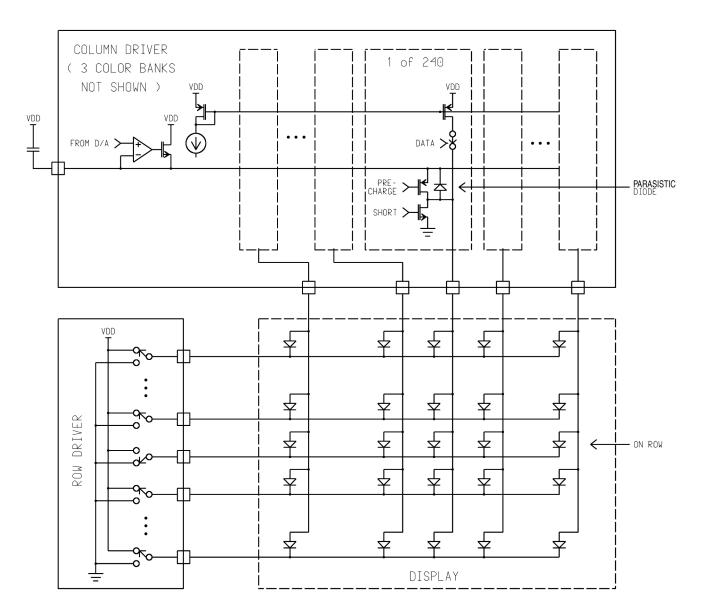


Timing Diagrams:


Load Data Pattern Macro Timing

Data Output Timing

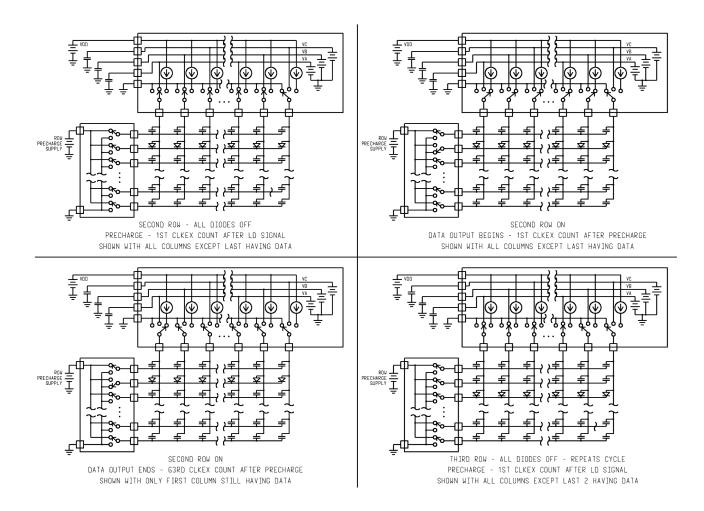
LE	DISCHARGE SET TO N COUNTS, PRECHARGE SET TO 3 COUNTS
CLKEX	ARGE PRECHARGE DATA OUTPUT DISCHARGE - PRECHARGE - DISCHARGE - A DATA OUTPUT
PCB_ROW	
CLK_ROW	
LE	DISCHARGE SET TO 0 COUNTS, PRECHARGE SET TO 3 CDUNTS
	A K CLHU
PC B_ROW	
CLK_ROW	
	DISCHARGE SET TO 3 COUNTS, PRECHARGE SET TO 0 COUNTS
LE	LLSUA K KILHD
CLKEX	
PC B_ROW	DATA OUT ———————————————————————————————————
CL.K_ROW	



APPLICATION NOTES:

Application Note 1 - Parasitic Diode in Precharge Circuit:

The MX823 has a parasitic diode connected between the precharge reference pin PRECHA and column outputs 1, 4, ..., 238, and between PRECHB and outputs 2, 5, ..., 239, and between PRECHC and outputs 3, 6, ..., 240 as shown below. This means that the precharge voltage must be set above the display diode anode voltages during calibration and at or above display diode anode voltages during operation or output current will flow through the parasitic diodes and not the display.



Display Block Diagram

Application Note 2 - Display Switching Pattern:

The diagram below shows the switching sequence the row and column drivers go through.

SEMICONDUCTOR DIE DATA SHEET

The MXED102 is a digital data driver for Passive Matrix Organic Light Emitting Diode (OLED) and Polymer Light Emitting Diode (PLED, PolyLED, LEP, . . . etc.) displays, with anodes connected to the columns. This document specificies the physical and mechanical properties of MXED102 semiconductor die, as provided in wafer form.

DIMENSIONS

Die Size

"X Dimension" Center Scribe to Center Scribe

"Y Dimension" Scribe to Center Scribe

Die Thickness

Unthinned (Non Back Lapped Wafer) Thickness: 25 mils

BONDING PADS

Locations and Sizes - Driver Outputs

			I	MXED1	02 PAD	LOCATIO	NS				
			co	ORDINATES	S REFEREN	CE TO CENTER	OF PAD				
SOUA	RE(60X BY	60Y)	RE	CT(40X BY	60Y)	REC	T(40X BY 6	(0Y)	REC	CT(40X BY	60Y)
NAME	X	Y	NAME	X	V Y	NAME	X	V Y	NAME	X	V Y
IOUT0	338.6	30	IOUT61	4249.3	30	IOUT124	8214.1	30	IOUT187	12179.1	30
IOUT1	424.9	30	IOUT62	4309.3	30	IOUT125	8274.1	30	IOUT188	12239.1	30
IOUT2	511.3	30	IOUT63	4369.3	30	IOUT126	8334.1	30	IOUT189	12299.1	30
	CT(40X BY 6		IOUT64	4429.3	30	IOUT127	8394.1	30	IOUT190	12359.1	30
NAME	X	Y	IOUT65	4489.3	30	IOUT128	8454.1	30	IOUT191	12419.1	30
IOUT3	584.4	30	IOUT66	4549.3	30	IOUT129	8514.1	30	IOUT192	12479.1	30
IOUT4	644.4	30	IOUT67	4609.3	30	IOUT130	8574.1	30	IOUT193	12539.1	30
IOUT5	704.4	30	IOUT68	4669.3	30	IOUT131	8634.1	30	IOUT194	12599.1	30
IOUT6 IOUT7	764.4 824.4	30 30	IOUT69 IOUT70	4729.3 4789.3	30 30	IOUT132 IOUT133	8694.1 8754.1	30 30	IOUT195	12659.1 12719.1	30 30
IOUT7	884.4	30	IOUT70	4789.3	30	IOUT133	8754.1	30	IOUT196	12719.1	30
IOUT9	944.4	30	IOUT72	4909.3	30	IOUT134	8874.1	30	IOUT197	12839.1	30
IOUT10	1004.4	30	IOUT73	4969.3	30	IOUT136	8934.1	30	IOUT199	12899.1	30
IOUT11	1064.4	30	IOUT74	5029.3	30	IOUT137	8994.1	30	IOUT200	12959.1	30
IOUT12	1124.4	30	IOUT75	5089.3	30	IOUT138	9054.1	30	IOUT201	13019.1	30
IOUT13	1184.4	30	IOUT76	5149.3	30	IOUT139	9114.1	30	IOUT202	13079.1	30
IOUT14	1244.4	30	IOUT77	5209.3	30	IOUT140	9174.1	30	IOUT203	13139.1	30
IOUT15	1304.4	30	IOUT78	5269.3	30	IOUT141	9234.1	30	IOUT204	13199.1	30
IOUT16	1364.4	30	IOUT79	5329.3	30	IOUT142	9294.1	30	IOUT205	13259.1	30
IOUT17	1424.4	30	IOUT80	5389.3	30	IOUT143	9354.1	30	IOUT206	13319.1	30
IOUT18	1484.4	30	IOUT81	5449.3	30	IOUT144	9414.1	30		RE(60X B	
IOUT19	1544.4	30	IOUT82	5509.3	30	IOUT145	9474.1	30	NAME	X	Y
IOUT20	1604.4	30	IOUT83	5569.3	30	IOUT146	9534.1	30	IOUT207	13392	30
IOUT21	1664.4	30 30	IOUT84	5629.3	30 30		RE(60X BY		IOUT208	13478.4	30 30
IOUT22 IOUT23	1724.4 1784.4	30	IOUT85	5689.3 5749.3	30	IOUT147	X 9607	Y 30	IOUT209 IOUT210	13564.7 13678.2	30
IOUT23	1844.4	30		ARE(60X B		IOUT147	9693.4	30	IOUT210	13764.5	30
IOUT25	1904.4	30	NAME		Y	IOUT140	9779.7	30	IOUT212	13850.9	30
IOUT26	1964.4	30	IOUT87	5822.2	30	IOUT150	9893.4	30		CT(40X BY	
	RE(60X BY		IOUT88	5908.6	30	IOUT151	9979.7	30	NAME	X	Y
NAME	X	Ý	IOUT89	5994.9	30	IOUT152	10066.1	30	IOUT213	13924	30
IOUT27	2037.3	30	IOUT90	6108.4	30	REC	T(40X BY 6	0Y)	IOUT214	13984	30
IOUT28	2123.7	30	IOUT91	6194.7	30	NAME	Х	Y	IOUT215	14044	30
IOUT29	2210	30	IOUT92	6281.1	30	IOUT153	10139.1	30	IOUT216	14104	30
IOUT30	2323.6	30		CT(40X BY	· · ·	IOUT154	10199.1	30	IOUT217	14164	30
IOUT31	2409.9	30	NAME	X	Y	IOUT155	10259.1	30	IOUT218	14224	30
IOUT32	2496.3	30	IOUT93 IOUT94	6354.1	30 30	IOUT156	10319.1	30 30	IOUT219	14284 14344	30 30
NAME	CT(40X BY 60	VT) Y	IOUT94	6414.1 6474.1	30	IOUT157 IOUT158	10379.1 10439.1	30	IOUT220	14344	30
IOUT33	2569.3	30	IOUT96	6534.1	30	IOUT158	10439.1	30	IOUT222	14464	30
IOUT34	1629.3	30	IOUT97	6594.1	30	IOUT160	10559.1	30	IOUT223	14524	30
IOUT35	2689.3	30	IOUT98	6654.1	30	IOUT161	10619.1	30	IOUT224	14584	30
IOUT36	2749.3	30	IOUT99	6714.1	30	IOUT162	10679.1	30	IOUT225	14644	30
IOUT37	2809.3	30	IOUT100	6774.1	30	IOUT163	10739.1	30	IOUT226	14704	30
IOUT38	2869.3	30	IOUT101	6834.1	30	IOUT164	10799.1	30	IOUT227	14764	30
IOUT39	2929.3	30	IOUT102	6894.1	30	IOUT165	10859.1	30	IOUT228	14824	30
IOUT40	2989.3	30	IOUT103	6954.1	30	IOUT166	10919.1	30	IOUT229	14884	30
IOUT41	3049.3	30	IOUT104	7014.1	30	IOUT167	10979.1	30	IOUT230	14944	30
IOUT42	3109.3	30	IOUT105	7074.1	30	IOUT168	11039.1	30	IOUT231	15004	30
IOUT43 IOUT44	3169.3 3229.3	30	IOUT106	7134.1	30	IOUT169 IOUT170	11099.1	30	IOUT232 IOUT233	15064	30
IOUT44 IOUT45	3229.3	30 30	IOUT107 IOUT108	7194.1 7254.1	30 30	IOUT170	11159.1 11219.1	30 30	IOUT233	15124 15184	30 30
IOUT45	3289.3	30	IOUT108	7254.1	30	IOUT171	11279.1	30	IOUT234	15184	30
IOUT48	3409.3	30	IOUT109	7374.1	30	IOUT172	11339.1	30	IOUT235	15304	30
IOUT48	3469.3	30	IOUT111	7434.1	30	IOUT174	11399.1	30		ARE(60X B	
IOUT49	3529.3	30	IOUT112	7494.1	30	IOUT175	11459.1	30	NAME	X	Y
IOUT50	3589.3	30	IOUT113	7554.1	30	IOUT176	11519.1	30	IOUT237	15376.9	30
IOUT51	3649.3	30	IOUT114	7614.1	30	IOUT177	11579.1	30	IOUT238	15463.3	30
IOUT52	3709.3	30	IOUT115	7674.1	30	IOUT178	11639.1	30	IOUT239	15549.6	30
IOUT53	3769.3	30	IOUT116	7734.1	30	IOUT179	11699.1	30			
IOUT54	3829.3	30	IOUT117	7794.1	30	IOUT180	11759.1	30			
IOUT55	3889.3	30	IOUT118	7854.1	30	IOUT181	11819.1	30			
IOUT56	3949.3	30	IOUT119	7914.1	30	IOUT182	11879.1	30	-		
IOUT57	4009.3	30	IOUT120	7974.1	30	IOUT183	11939.1	30	4		
IOUT58	4069.3	30	IOUT121	8034.1	30	IOUT184	11999.1	30	{		
IOUT59	4129.3	30	IOUT122	8094.1	30	IOUT185	12059.1	30	-		
IOUT60	4189.3	30	IOUT123	8154.1	30	IOUT186	12119.1	30]		

The information contained on this page is preliminary. Although the order of the bond pad will remain the same, the XY dimensions in the final document may vary slightly. Please take this possibility into consideration when doing any chip on board layouts.

Interface I/O

MXED102 PAD LOCATIONS

COORDINATES REFERENCE LOWER LEFT EDGE

		SQUA
NAME	Х	Y
LK_ROW	314.2	1853.3
CB_ROW	734.2	1853.3
TESTA	1100.5	1853.3
TESTB	1392.8	1853.3
GNDA	1614.2	1853.3
LTKNB	1942.2	1853.3
MASTER_IN	2226.9	1853.3
GNDA	2442.7	1853.3
AD_IN	2720	1853.3
VCC	2943.9	1853.3
CLKSH	3070.7	1853.3
CLKEX	3286.4	1853.3
CLKSER	3502.1	1853.3
SDATA	3853.1	1853.3
SAMPLE	4137.8	1853.3
LE	4353.5	1853.3
DA0	4569.2	1853.3
DA1	4784.9	1853.3
DA2	5000.6	1853.3
DA3	7927.8	1853.3
DA4	8143.5	1853.3
DA5	8359.2	1853.3
DB0	8574.9	1853.3
DB1	8790.6	1853.3
DB2	9006.3	1853.3
DB3	9222	1853.3
DB4	9437.7	1853.3
DB5	9653.4	1853.3
DC0	9869.1	1853.3
DC1	10084.8	1853.3
DC2	10300.5	1853.3
DC3	10516.2	1853.3
DC4	10731.9	1853.3
DC5	10947.6	1853.3
RSTB	11163.3	1853.3
I1TRIM0	11307	1853.3
I1TRIM1	11447.9	1853.3
I1TRIM2	11588.8	1853.3
I1TRIM3	11729.7	1853.3
I1TRIM4	11870.6	1853.3
I1TRIM5	12011.5	1853.3
I1TRIM6	12152.4	1853.3
I2TRIM0	12290.7	1853.3
I2TRIM1	12431.6	1853.3
I2TRIM2	12572.5	1853.3
12_TEST	12783.7	1853.3
VTRIM0	13018.8	1853.3
VTRIM1	13159.7	1853.3
VTRIM2	13300.6	1853.3
VTRIM3	13441.5	1853.3
DRTKN	13885.6	1853.3
GNDA	14101.4	1853.3
VCC	14294.1	1853.3
ASTER_OUT	14556.2	1853.3
RTKNB	14976.2	1853.3
GNDA	15261	1853.3
ESTC	15538.3	1853.3

Notes:

CLARE LOCATIONS

Clare Headquarters 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Clare Micronix Division 145 Columbia Aliso Viejo, CA 92656-1490 Tel: 1-949-831-4622 Fax: 1-949-831-4628

SALES OFFICES

AMERICAS

Americas Headquarters

Clare 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Eastern Region

Clare 603 Apache Court Mahwah, NJ 07430 Tel: 1-201-236-0101 Fax: 1-201-236-8685 Toll Free: 1-800-27-CLARE

Central Region

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1 Tel: 1-905-333-9066 Fax: 1-905-333-1824

Western Region

Clare 1852 West 11th Street, #348 Tracy, CA 95376 Tel: 1-209-832-4367 Fax: 1-209-832-4732 Toll Free: 1-800-27-CLARE

Canada

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1 Tel: 1-905-333-9066 Fax: 1-905-333-1824

EUROPE

European Headquarters

CP Clare nv Bampslaan 17 B-3500 Hasselt (Belgium) Tel: 32-11-300868 Fax: 32-11-300890

France

Clare France Sales Lead Rep 99 route de Versailles 91160 Champlan France Tel: 33 1 69 79 93 50 Fax: 33 1 69 79 93 59

Germany

Clare Germany Sales ActiveComp Electronic GmbH Mitterstrasse 12 85077 Manching Germany Tel: 49 8459 3214 10 Fax: 49 8459 3214 29

Italy

C.L.A.R.E.s.a.s. Via C. Colombo 10/A I-20066 Melzo (Milano) Tel: 39-02-95737160 Fax: 39-02-95738829

Sweden

Clare Sales Comptronic AB Box 167 S-16329 Spånga Tel: 46-862-10370 Fax: 46-862-10371

United Kingdom

Clare UK Sales Marco Polo House Cook Way Bindon Road Taunton UK-Somerset TA2 6BG Tel: 44-1-823 352541 Fax: 44-1-823 352797

ASIA PACIFIC

Asian Headquarters

Clare Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C. Tel: 886-2-2523-6368 Fax: 886-2-2523-6369

http://www.clare.com

Clare cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in this Clare product. No circuit patent licenses nor indemnity are expressed or implied. Clare reserves the right to change the specification and circuitry, without notice at any time. The products described in this document are not intended for use in medical implantation or other direct life support applications where malfunction may result in direct physical harm, injury or death to a person.

Specification: DS-MXED102-R2 ©Copyright 2001, Clare, Inc. All rights reserved. Printed in USA. 5/21/01